SST Data Sets: Overview & Comparison Table

Sea surface temperature (SST) data sets are an essential resource for monitoring and understanding climate variability and climate change.  By surface area, SSTs are the dominant (~71%) input into merged global land-ocean surface temperature data products.   Historically, SST measurments have been made from ships.  Ship data have been compiled into databases like ICOADS, which in turn form the main input into long-term climate data sets like HadSST3 and ERSSTv3b.  Moored and drifting buoys are another primary source of in-situ SST data, especially in remote regions like the Southern Ocean, where ARGO floats offer much improved coverage.  Over the tropical Pacific, the dense TAO-TRITON array provides key measurements for monitoring the emergence and evolution of El Niño events.  In-situ data are also the primary reference for calibrating satellite-based SST estimates. Satellite-based estimates utilize measurements from infrared (IR) and/or microwave wavelengths.  Microwave observations are less sensitive to clouds than IR measurements, but are more sensitive to scattering by rain, and have lower spatial resolution.  For climate research, the longest satellite-based data set is NOAA's OI SSTv2, extending from 1981 to present, with AVHRR IR measurements as the primary source data.  The Group for High-Resolution SST (GHRSST) is an umbrella organization coordinating the development of multi-spectral SST data products for both the operational and climate communities.  Currently, one of the longest global GHRSST products is the Multi-Scale Ultra-High Resolution (MUR) SST analysis, a 0.011 degree lat-lon gridded data set developed by NASA-JPL, covering 2002-present. 

Considerations for utilizing SST data sets in climate research and model evaluation will be discussed in the Expert Guidance section.  Common considerations include  (1) The spatial resolution - e.g., are features like the Gulf Stream and its fronts are eddies resolved? ; (2) The quantity being measured - e.g., is it a "skin" temperature of a very thin surface layer, or a bulk temperature of the upper meter or more?; (3) The homogeneity of the temporal record - e.g.,  have issues like satellite drift, sampling frequency and density, and changing observational practices been dealt with in the construction of the data product?; (3) Spatial Interpolation- e.g. have the data been binned, or statistically interpolated in some manner, and what effect does this have on the spatial and temporal variance of climate signals? 

The figures below illustrate climatologies, standard deviations, and trends in several of the SST data sets commonly used for climate research.  Further information on these data sets is contained in the table below. 

Years of Record

1850/01 to 2014/04
temporal metadataID:

Timestep

Climatology | Daily | Monthly | Weekly

Data Time Period Extended?

yes, data set is extended

Domain

Ocean or Land

Ocean Only

Vertical Levels

Earth system components and main variables

Key Figures

Click the thumbnails to view larger sizes

Thumbnails

Captions

Cite this page

National Center for Atmospheric Research Staff (Eds). Last modified 01 May 2014. "The Climate Data Guide: SST Data Sets: Overview & Comparison Table." Retrieved from https://climatedataguide.ucar.edu/climate-data/sst-data-sets-overview-comparison-table.

Acknowledgement of any material taken from this page is appreciated. On behalf of experts who have contributed data, advice, and/or figures, please cite their work as well.